基本信息
庞竞舟,副教授,博士,硕士生导师
IEEE Senior Member/IEEE MTT-S Member/IEEE Solid-State Circuits Society Member
欧盟“玛丽居里基金”与爱尔兰科学基金委“先锋项目”共同资助学者
国家自然科学基金委评审专家,重庆市科技局评审专家
集成芯片/微波理论技术/电路与系统方向顶级期刊JSSC,TMTT,TCAS-I等特邀审稿人
ResearchGate: https://www.researchgate.net/profile/Jingzhou-Pang
研究方向
-面向6G超宽带射频微波功率发射理论及氮化镓单片集成技术
-空天地海融合集成收发系统架构、毫米波芯片实现及超宽带信号处理技术
-电子战高功率通信雷达一体化发射阵列固态集成前端芯片基础及研制
-超高速时变大动态信号激励下器件建模理论及稀疏非线性矫正技术
-人工智能辅助的射频/微波电路自动化设计与自动化测试环境研究
-高效率智能化能量传输及集成电源设计
联系方式
E-mail: jingzhou.pang@cqu.edu.cn
办公地址:重庆市沙坪坝区沙正街174号365体育官方唯一入口A区主教学楼2313(邮编400044)
个人简介
庞竞舟博士分别于2010年和2016年在电子科技大学获得学士及博士学位,主要研究面对通信系统的超宽带高效率射频功率放大器架构。他于2016年12月博士毕业后加入华为2012实验室担任预研工程师,负责5G通信系统中的功率放大器、大规模MIMO发射机以及先进光载微波系统的研发。2018年7月,他加入爱尔兰国立都柏林大学知名的RF/Microwave Research Group担任研究员,开展射频/微波/毫米波单片集成功放与下一代移动通信发射机架构相关研究,期间设计和指导设计了十余款氮化镓微波单片集成功放芯片。2020年11月,他加入365体育官方唯一入口担任副教授。他先后主持或参与了多项国家级、省部级以及横向科研项目,与业内知名企业和各大科研院所均保持良好的合作关系。
科研概况
针对新一代无线通信架构对能效、带宽及线性的重大战略需求和核心技术问题,在国家自然科学基金、业内头部企业及各大科研院所的项目支持下,课题组在超宽带发射机架构、高效宽带射频功放和氮化镓集成功放领域开展了一系列富有创造性的工作,在包括集成电路领域顶级期刊JSSC及微波技术领域顶级期刊TMTT上以第一作者或唯一通讯作者身份发表了10余篇技术长文。课题组所提出的低阶阻抗逆变后匹配Doherty架构成功拓展了该类功放的带宽,被广泛应用于基站和终端设备中,相关论文单篇引用已超100次。课题组在国际上首次实现了6频段栅极互易技术,成果引起广泛关注并被TMTT主编单独撰文推荐为Best Reading Paper,指导学生采用该技术设计的功放样机获得2022华为大学生无线基站Massive MIMO创新大赛特等奖第一名。课题组在国际上率先实现了氮化镓全集成连续类Doherty功放,成果发表于芯片领域顶级期刊JSSC上,为重庆地区首篇,且是大陆地区首次在该期刊上发表氮化镓基射频集成电路相关论文。
团队招生
庞竞舟博士2020年11月加入365体育官方唯一入口微电子于通信工程学院智能射频技术与集成系统团队。课题组成员包括高级/中级职称教师共5名,博士/硕士研究生近30名,研究方向覆盖移动通信、卫星通信、军用/民用雷达为应用背景的先进收发机软硬件系统研究以及高效率能量传输系统开发,与相关研究方向的国内外顶尖研究团队保持良好的学术交流关系,支持学生赴国内外顶尖研究团队交流、继续深造。课题组研究生多次获得国家级奖学金,在研究生阶段即可发表专业领域顶级期刊,积极支持研究生参与国内外顶级学术会议。课题组师生/同学关系融洽,氛围良好,研究项目经费充裕,能为研究生提供良好的学习成长条件。
热烈欢迎来自通信、电子、集电相关专业的同学报考!
招生专业
学术型硕士:信息与通讯工程(081000)
专业型硕士:电子信息(085400)
代表性论文(*为通讯作者)
----2023-----
S. Liu, J. Pang* et al., "Triple-Mode Reciprocal Doherty Power Amplifier With Multi-Band Operation and Extended High Efficiency Range," in IEEE Transactions on Circuits and Systems I: Regular Papers, 2023.
C. Chu, J. Pang, R. Darraji, S. K. Dhar, T. Sharma and A. Zhu, "Broadband Sequential Load Modulated Balanced Amplifier With Extended Design Space Using Second Harmonic Manipulation," in IEEE Transactions on Microwave Theory and Techniques, 2023.
W. Shi et al., "Divisional Load-Modulated Balanced Amplifier With Extended Dynamic Power Range," in IEEE Transactions on Microwave Theory and Techniques, 2023.
----2022-----
J. Pang*, C. Chu, J. Wu, et al., "Broadband GaN MMIC Doherty Power Amplifier Using Continuous-Mode Combining for 5G Sub-6 GHz Applications," in IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 2143-2154, July 2022.
R. Gao, J. Pang*, et al., "Dual-Band Three-Way Doherty Power Amplifier Employing Dual-Mode Gate Bias and Load Compensation Network," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 4, pp. 2328-2340, April 2022.
R. Quaglia, J. Pang, S. C. Cripps and A. Zhu, "Load-Modulated Balanced Amplifier: From First Invention to Recent Development," in IEEE Microwave Magazine, vol. 23, no. 12, pp. 60-70, Dec. 2022.
C. Chu, T. Sharma, S. Dhar, R. Darraji, X. Wang, J. Pang, A. Zhu, "Waveform Engineered Sequential Load Modulated Balanced Amplifier With Continuous Class-F−1 and Class-J Operation," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 2, pp. 1269-1283, Feb. 2022.
T. Li et al., "Analysis and Design of Class-EM Power Amplifier at Subnominal Operation," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 12, pp. 5339-5352, Dec. 2022.
R. Gao, J. Pang*, Z. Dai, W. Shi, S. Liu and M. Li, "High Power Broadband Sequential Load Modulated Balanced Power Amplifier Employing Impedance Convertible Coupler," 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 2022, pp. 1-3.
----2021-----
Y. Li, X. Wang, J. Pang and A. Zhu, "Boosted Model Tree-Based Behavioral Modeling for Digital Predistortion of RF Power Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 9, pp. 3976-3988, Sept. 2021.
Y. Xu, J. Pang*, X. Wang and A. Zhu, "Three-Stage Load Modulated Power Amplifier With Efficiency Enhancement at Power Back-Off," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 3107-3119, June 2021.
Y. Xu, J. Pang*, X. Wang and A. Zhu, "Enhancing Bandwidth and Back-Off Range of Doherty Power Amplifier With Modified Load Modulation Network," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 4, pp. 2291-2303, April 2021.
J. Peng, W. Shi, J. Pang, F. You and S. He, "Iterative Learning Control for Signal Separation in Dual-RF Input Doherty Transmitter," 2020 50th European Microwave Conference (EuMC), 2021, pp. 953-956.
F. Xiao, Z. Dai, J. Pang, R. Gao, X. Ran and M. Li, "A Doherty Power Amplifier With Extended Back-off by Using Non-Infinite Peaking Impedance and Complex Combining Load," 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2021, pp. 182-184.
Y. Zhang, G. Li, H. Li, W. Qiao, J. Pang and F. Liu, "Simplified Vector Decomposition Time-Delay Neural Network Model for RF Power Amplifier Modeling and Digital Predistortion," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2021, pp. 1-3.
----2020-----
J. Pang*, Y. Li, C. Chu, J. Peng, X. Y. Zhou and A. Zhu, "Extend High Efficiency Range of Doherty Power Amplifier by Modifying Characteristic Impedance of Transmission Lines in Load Modulation Network," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 707-710.
J. Pang*, C. Chu, Y. Li and A. Zhu, "Broadband RF-Input Continuous-Mode Load-Modulated Balanced Power Amplifier With Input Phase Adjustment," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 10, pp. 4466-4478, Oct. 2020.
X. Y. Zhou, W. S. Chan, J. Pang, J. Xia and W. Feng, "Broadband Doherty-Like Power Amplifier Using Paralleled Right- and Left-Handed Impedance Transformers," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4599-4610, Nov. 2020.
Z. Dai, J. Pang, M. Li, Q. Li, J. Peng and S. He, "A Direct Solving Approach for High-Order Power Amplifier Matching Network Design," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 8, pp. 3278-3286, Aug. 2020.
J. Pang*, Z. Dai, Y. Li, M. Li and A. Zhu, "Multiband Dual-Mode Doherty Power Amplifier Employing Phase Periodic Matching Network and Reciprocal Gate Bias for 5G Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2382-2397, June 2020.
X. Y. Zhou, W. S. Chan, S. Chen, W. Feng, J. Pang and D. Ho, "Linearity Enhanced Harmonic-Modulated Impedance Inverter Doherty-Like Power Amplifier," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 2029-2041, June 2020.
M. Li, J. Pang*, Y. Li and A. Zhu, "Bandwidth Enhancement of Doherty Power Amplifier Using Modified Load Modulation Network," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 1824-1834, June 2020.
J. Pang* et al., "Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1741-1753, May 2020.
----Before 2019----
M. Li, J. Pang*, Y. Li and A. Zhu, "Ultra-Wideband Dual-Mode Doherty Power Amplifier Using Reciprocal Gate Bias for 5G Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 10, pp. 4246-4259, Oct. 2019.
Z. Dai, S. He, J. Pang, C. Huang, J. Peng, Z. Yang, M. Li, "Lowpass Network Synthesis Using “Feldtkeller Correction Approach”," in IEEE Access, vol. 7, pp. 27970-27982, 2019, doi: 10.1109/ACCESS.2019.2894408.
Z. Dai, S. He, J. Peng, C. Huang, W. Shi and J. Pang, "A Semianalytical Matching Approach for Power Amplifier With Extended Chebyshev Function and Real Frequency Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 10, pp. 3892-3902, Oct. 2017.
Z. Dai, S. He, J. Pang, C. Huang and Qirong Li, "A two-stage 0.9–2 GHz GaN power amplifier using commensurate transmission line," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016, pp. 1-3.
C. Huang, S. He, Z. Dai, J. Pang and Zhebin Hu, "A 80W high gain and broadband Doherty power amplifier for 4/5G wireless communication systems," 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-4.
J. Pang*, S. He, Z. Dai, C. Huang, J. Peng and F. You, "Novel design of highly-efficient concurrent dual-band GaN Doherty power amplifier using direct-matching impedance transformers," 2016 IEEE MTT-S International Microwave Symposium (IMS), 2016, pp. 1-4.
J. Peng, S. He, B. Wang, Z. Dai and J. Pang, "Digital Predistortion for Power Amplifier Based on Sparse Bayesian Learning," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9, pp. 828-832, Sept. 2016.
J. Pang*, S. He, C. Huang, Z. Dai, C. Li and J. Peng, "A Novel Design of Concurrent Dual-Band High Efficiency Power Amplifiers With Harmonic Control Circuits," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 137-139, Feb. 2016.
J. Pang*, S. He, C. Huang, Z. Dai, J. Peng and F. You, "A Post-Matching Doherty Power Amplifier Employing Low-Order Impedance Inverters for Broadband Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4061-4071, Dec. 2015.
主要科研项目
[1]国家自然科学基金,面上项目,耦合阵列功率放大器研究,2022.01-2025.12,主持
[2]国家重点研发计划,青年科学家项目,XXXXXX,2023.12-2026.12,任务负责人
[3]重庆市自然科学基金,面上项目,基于连续类合成阻抗的宽带氮化镓微波单片集成Doherty功放研究,2021.09-2024.08,主持
[4] 欧盟/爱尔兰科学基金委,纵向预研,移动平台无线通信系统中的高效率毫米波发射机,2018.07-2020.08,主持
[5] 爱尔兰科学基金委,纵向预研,下一代高速无线通信系统中的数字化线性高效率毫米波功放,2018.01-2022.03,主研
[6] 国家自然科学基金,面上项目,动态有源负载优化与瞬时包络幅度分段的宽带高效率发射机研究,2016.01-2019.12,主研
[7] 国家自然科学基金,面上项目,基于实频技术的高效率宽带功率放大器研究,2013.01-2016.12,主研